Studying structure and dynamics of protein complexes by solid-state NMR spectroscopy

Christian Ader, Gitta Angerstein, Manuel Etzkorn, Itzam de Gortari, Henrike Heise, Ashutosh Kumar, Henrik Müller, Robert Schneider, Karsten Seidel, Marc Baldus

Solid-state NMR group Max Planck Institute for Biophysical Chemistry 37077 Göttingen, Germany

The EBSA prize lecture

July 18th 2007

Life can be crowded...

Schematic representation of a crowded cell. Dobson Nature 2004

Molecular Model of an Average synaptic vesicle Jahn et al., Cell 2006

Magnetic resonance

"magnetic resonance imaging"

Interactions on the molecular level

H₂0,etc

"high-resolution NMR"

High-resolution NMR

Solution-state NMR

Interactions are relatively weak due to motion

Magnetic resonance: solution vs. solid-state NMR

ssNMR: Interactions are stronger and anisotropic

ssNMR Methods: Structural parameters

ssNMR Methods: Structural parameters

ssNMR Methods: Structural parameters

S. Luca, H. Heise, M. Baldus, Acc. Chem. Res. 2003, 36, 858-865.

hardware

ssNMR: Structure and Dynamics

M. Baldus, J.Biomol. NMR. 2007, in press.

ssNMR: Structure and Dynamics

Mobile

Rigid

Molecular complexes investigated by solid-state NMR spectroscopy

- For a large range of molecular sizes and correlation times
 - Proteoliposomes
 - Powders
 - frozen solutions
 - microcrystals
 - gels
 - precipitates
 - aggregates
 - etc.

Molecular complexes investigated by solid-state NMR spectroscopy

- For a large range of molecular sizes and correlation times
 - Proteoliposomes
 - Powders
 - frozen solutions
 - microcrystals

Proteoliposomes

Microcrystals

Baldus M, Curr. Opin. Struct. Biol. 2006, 16, 618-623.

Outline

Protein Folding & Aggregation

Ligand – Membrane Protein interactions

Membrane Protein complexes

Protein folding & aggregation

α -synuclein (AS)

 $\alpha\mbox{-synuclein fibrils}$ are found in brains of patients with Parkinson disease.

(intracellular inclusions in dopaminergic neurons)

MDVFMKGLS KAKEGVVAAAE 140 aa KTKQGVAEAAG KTKEGVLYVGS KTKEGVVHGVATVAE KTKEQVTNVGG AVVTGVTAVAQ KTVEGAGSIAAATGFV KKDQLGKNEEGAPQEGILEDMPV DPDNEAYEMPSEEGYQDYEPEA

ssNMR methods for α synuclein fibrils and beyond

AS: Correlation between molecular structure and fibril morphology

Protein aggregation and fibril formation

Characterize folding intermediate by 2D ssNMR

Catabolite repression Histidine-containing phosphorcarrier protein (Crh)

Precipitate vs. Micro Xtals

Characterize folding intermediate by 2D ssNMR

Refolding according to time-resolved 2D ssNMR

Refolding according to time-resolved 2D ssNMR

Refolding according to time-resolved 2D ssNMR

2D ssNMR data are sensitive to aggregation kinetics

Outline

Protein Folding & Aggregation

Ligand – Membrane Protein interactions

Membrane Protein complexes

Ligand – membrane protein interactions by ssNMR

The Neurotensin – NTS-1 System

Neurotensin bound to a G-protein coupled receptor

¹³C/¹⁵N neurotensin ELYENKPR⁸R⁹P¹⁰Y¹¹J¹²L¹³ 13C/15N

U[¹³C,¹⁵N] NT(8-13) 10 μg – 22 μg

Neurotensin bound to a G-protein coupled receptor

Conformational disorder of Neurotensin

Heise, H., Luca, S., de Groot, B. L., Grubmueller, H. & Baldus, M. (2005) Biophys. J. 89, 2113-2120.

Comparison: Binding affinities of NT and rigidized NT

A ssNMR-structure / affinity relationship !

Ligand – membrane protein interactions by ssNMR

Voltage-gated ion channels

Relative fraction of long-range correlations

A. Lange, S. Luca, M. Baldus, *J.Am.Chem.Soc.* 2002, *124*, 9704-9705.
Lange, K. Seidel, L. Verdier, S. Luca, M. Baldus, *J.Am.Chem.Soc.* 2003, *125*, 12640-12648.
K. Seidel, M. Etzkorn, C. Griesinger, A. Sebald, M. Baldus, *J.Phys.Chem. A.*, 2005, 109, 2436-2442.

Obtaining the 3D ssNMR structure of KTX

Obtaining the 3D ssNMR structure of KTX

Backbone RMSD: 0.8 Å Backbone RMSD (residues 4-38) between solid KTX and KTX in solution:1.9 Å

Free vs. Channel-bound U-[¹³C,¹⁵N] KTX

Free vs. KTX-bound U[¹³C,¹⁵N] KcsA-Kv1.3

Toxin – Ion channel complex according to MD

Toxin – Ion channel complex according to ssNMR

- 1. Toxin inserts deeper into pore
- 2. Toxin structure altered.
- 3. Turret not directly involved in binding interface
- 4. Selectivity filter changes conformation

Channel: Intrinsic conformational flexibility

Outline

Protein Aggregation

Ligand – Membrane Protein interactions

Membrane Protein complexes

How can one receptor exert two different functions ?

Bogomolni, R. A., Stoeckenius, W., Szundi, I., Perozo, E., Olson, K. D., and Spudich, J. L. (1994) *PNAS* 91, 10188-10192 Schmies, G., Engelhard, M., Wood, P. G., Nagel, G., and Bamberg, E. (2001) *PNAS* 98, 1555-1559 Sudo, Y., Iwamoto, M., Shimono, K., Sumi, M., and Kamo, N. (2001) *Biophys. J.* 80, 916-922 Sudo, Y., and Spudich, J. L. (2006) *PNAS* 103, 16129-16134

Sensory rhodopsin II belongs to the family of Retinal proteins

Ion channels

photo-sensors

Gordeliy, V. I. et al., **Nature** 2002, *419*, 484-487., **Nature** 2006, 440, 115-119 E. Bordignon, J. P. Klare, M. Doebber, A. A. Wegener, S. Martell, M. Engelhard, H.-J. Steinhoff, **J. Biol. Chem.** 2005, *280*, 38767-38775.

adapted from: Y. Sudo, M. Yamabi, S. Kato, C. Hasegawa, M. Iwamoto, K. Shimono, N. Kamo, J. Mol. Biol. 2006, 357, 1274-1282.

SRII proteoliposomes: ssNMR assignments

Static protein residues, SRII proteoliposomes

Dynamic protein residues, SRII proteoliposomes

Water exposed protein residues, SRII proteoliposomes

Summary

Solid-state NMR can be applied to protein complexes under a variety of experimental conditions

Protein folding and aggregation can be studied at atomic resolution and in real time

Molecular plasticity plays an important role in high-affinity ligand binding, complexation events and protein functionality in membranes

Acknowledgements

<u>Göttingen:</u> MPIBPC: S. Becker C. Griesinger

K. Giller V. Klaukien

T. Carlomagno M. Zweckstetter

W. Hoyer T. Jovin

D. Riedel

B. De Groot H. Grubmueller

MPI Dortmund: M. Engelhard S. Martell

Mainz:

G. Unden H. Kneuper <u>Hamburg:</u> O. Pongs S. Hornig

M. Von Bergen E. Mandelkow

<u>NIH</u>: R. Grisshammer

<u>CNRS Lyon</u>: A. Böckmann

<u>CNRS Marseille</u>: M.F. Martin-Eauclaire

Edmonton: H.S. Young

<u>Berkeley:</u> D. Trauner Christian Ader Gitta Angerstein Manuel Etzkorn Dr. Itzam de Gortari Dr. Henrike Heise Dr. Ashutosh Kumar Dr. Henrik Müller Robert Schneider Karsten Seidel

Dr. Sorin Luca (NIH) Lars Sonnenberg (TU Munich) Dr. Colan Hughes (Cardiff) Dr. Ovidiu C. Andronesi (Harvard) Dr. Adam Lange (ETH Zurich)

